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Abstract
The underdamped Langevin equation of motion of a particle, in a symmetric periodic potential
and subjected to a symmetric periodic forcing with mean zero over a period, with nonuniform
friction, is solved numerically. The particle is shown to acquire a steady state mean velocity at
asymptotically large timescales. At these large timescales the position dispersion grows
proportionally with time, t , allowing for calculating the steady state diffusion coefficient D.
Interestingly, D shows a peaking behaviour around the same F0 where the net current peaks.
The net (ratchet) current, however, turns out to be largely coherent. At an intermediate
timescale, which bridges the small timescale behaviour of dispersion ∼t2 to the large time one,
the system shows periodic oscillation between dispersionless and steeply growing dispersion
depending on the amplitude and frequency of the forcing. The contribution of these different
dispersion regimes to ratchet current is analysed.

1. Introduction

The investigation of particle motion in periodic potentials has
obvious relevance in condensed matter studies. Motion of ions
in a crystalline lattice is a case in point. Stochasticity in the
motion is naturally introduced at nonzero temperatures. In
these environments the particle motion can be approximately
described by a Langevin equation with suitable model
potentials. Depending on the problem at hand the motion
is either considered heavily damped, almost undamped, or in
the intermediate situation mildly damped (or underdamped).
In many a situation in the former two extreme cases
the Langevin equation (or the corresponding Fokker–Planck
equation) becomes amenable to analytical solution. However,
in the underdamped situation, barring a few special cases,
numerical methods are used to solve the equation of motion
of the particle [1]. Owing to various kinds of errors and
approximations involved in these (numerical) methods, exact
quantitative solutions are not possible. However, the method
can reveal useful qualitative trends in the behaviour of the
particle motion. For instance, recently it was shown [2] that
a Brownian particle, moving in an asymmetric but periodic
potential and subjected to a symmetric periodic external drive

(which adds to zero when averaged over a period), acquires
a net motion when the parameters of the problem are chosen
suitably. Such a net particle current without the application of
any net external bias or potential gradient in the presence of
thermal noise is called a thermal ratchet current and the system
giving such a current is termed as a thermal ratchet [3]. Here
the equilibrium condition of detailed balance is not applicable
because the system was driven far away from equilibrium by
rocking it periodically in the presence of noise. It was further
shown that this system can even exhibit absolute negative
mobility [4]. This prediction has already been found to be true
experimentally [5]. It shows that in underdamped conditions or
in the inertial regime diverse possibilities can be (qualitatively)
uncovered by (numerically) solving the appropriate equations
of motion.

In the above important examples [2, 4] the potential
asymmetry was one of the necessary conditions for the
realization of ratchet current. The particle had to surmount
the same potential barrier on either direction; only the slopes
leading to the top of the barrier differed. A sinusoidal
potential, for example, having no such asymmetry would
not have yielded the ratchet current. In the present work,
we consider similar particle motion in a sinusoidal potential

0953-8984/09/175409+09$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/17/175409
mailto:mangal@nehu.ac.in
http://stacks.iop.org/JPhysCM/21/175409


J. Phys.: Condens. Matter 21 (2009) 175409 S Saikia and M C Mahato

V (x) = −V0 sin(kx). However, instead of a uniform friction
coefficient of the medium we consider a model nonuniform
space-dependent friction coefficient γ (x) of the medium. In
particular, we consider a sinusoidally varying γ (x) = γ0(1 −
λ sin(kx + φ)) exactly similar to the potential but with a phase
lag, φ. A simple illustrative example of the model can be
imagined as a stationary pressure wave established in air giving
a periodic γ (x) for particle motion along x . An array of
ions with the periodicity of γ (x) but shifted a little to give
a phase lag φ will just fit our model for a charged particle
motion along x . Here the potential is symmetric and periodic.
However, the directional symmetry of the system is broken
by a phase shift in the similarly periodic γ (x). The model
form of a periodically varying friction γ (x) has been justified
earlier from mode-coupling theory of adatom motion on the
surface of a crystal of identical atoms [6]. Also, the equation
of motion has a direct correspondence with the resistively and
capacitatively shunted junction (RCSJ) model of Josephson
junctions; the term describing the nonuniformity of friction
having an one-to-one correspondence with the ‘cosφ’ term
in the RCSJ model [7]. Apart from the close analogy with
the RCSJ model of Josephson junctions, the inhomogeneous
systems with nonuniform diffusion coefficients have been
investigated earlier by Landauer [8] and Büttiker [9]. Büttiker
has shown that a particle moving in a one-dimensional periodic
potential with a similarly periodic diffusion coefficient, but
with a phase difference will experience an effective constant
force in one direction. Blanter and Büttiker obtained a ratchet
effect [10] in a system with similarly varying nonuniform
temperature and hence nonuniform diffusion coefficient. The
same has been obtained later in a detailed work by Benjamin
and Kawai [11] who consider similarly and simultaneously
varying periodic temperature and friction in space in the
overdamped limit. However, as stated earlier, in this work
we consider the friction coefficient to be nonuniform, keeping
the temperature uniform. Since the diffusion coefficient is
determined by the friction coefficient either separately or
together with the temperature, the arguments of Büttiker [9]
hold equally in the present case too. There is a difference,
however, between the role played by friction inhomogeneity
and temperature inhomogeneity. Through the pioneering
‘blowtorch’ work of Landauer, a temperature inhomogeneity
giving a current is a natural consequence [8, 10]. But in
the case of friction inhomogeneity, no such obvious inference
can be drawn. Temperature along with the potential function
determines the static (equilibrium) particle density distribution
irrespective of the spatial variation of friction. In other words,
frictional inhomogeneity has no effect in determining the static
density distribution of particles. Temperature nonuniformity
can result in unidirectional net particle current even without
the application of external forcings as has been clearly shown
in [10], whereas the effect of frictional nonuniformity can
be envisaged only in the dynamic situation [12]. The
effect of frictional inhomogeneity can manifest itself in two
ways. Wherever the friction is large in each period, particle
movement gets damped and hence the particles spend more
time there. This effectively changes the density distribution.
For instance, for φ �= 0, π , the friction coefficient will be

different immediately on the left side of the potential peak than
on the corresponding immediate right of the peak. Hence, in
the periodic (potential) situation it will appear (in the dynamic
situation) as though a static force has been applied in order
to bring about the change in the distribution [9]. On the
other hand, since the particle spends more time in the regions
where friction is large, they become more prone to absorb the
thermal energy of the immediate environment and hence will
effectively have higher probability to surmount the potential
barrier for motion [10]. These two competing aspects can give
rise to interesting complex behaviour of the particle currents
(see, for example, figure 4 of [12]) in periodic potential
systems. In the present work, we investigate a number of
interesting phenomena exhibited by ratchet current in these
inhomogeneous periodic systems. We drive the system with a
square-wave periodic field. The reason for choosing a square-
wave field as opposed to a sinusoidal field will become clear
as we proceed. The resulting Langevin equation is solved
numerically. We obtain a particle current and properties
associated with it in the parameter space of external field
amplitude F0, the average friction coefficient γ0, the phase
lag φ and the temperature T . Since it is a formidable task
to explore the entire parameter space, we present results only
for some regions of a few sections of this space where an
appreciable ratchet current is obtained.

The ratchet current v̄ is obtained for φ (�=nπ , with
integral n) in the steady state situation which is achieved in
the asymptotic time limit. In our case we observe particle
motion for a long time t such that the position dispersion
〈(�x(t))2〉 averaged over many similar trajectories approach
∼t . Thus, we calculate the diffusion constant D using the
relation 〈(�x(t))2〉 = 2Dt for given γ0, T , and φ. D shows
nonmonotonic behaviour with the field amplitude F0 and it
peaks around a value of F0 where v̄ attains a maximum. That
is to say, the ratchet current is maximized when the system is
most diffusive. To compare the extent of this diffusive spread
with the directional average displacement, a quantity Péclet
number, Pe = x̄2

Dt , the ratio of the square of mean displacement
x̄ in time t to half the square of diffusive spread in the same
time interval t [14] is calculated. Our calculation shows that
in the region where the ratchet current is appreciable, and in
particular where v̄ peaks, Pe is much larger than 2, indicating
that the transport is coherent.

The current in the explored parameter region, however, is
not large enough to obtain (practically) useful work; when a
small load is applied against current the current either reduces
to a small level or starts flowing in the direction of the applied
load. Thus, in the given circumstances, no appreciable useful
work can be extracted from this inhomogeneous (frictional)
ratchet. However, even in the absence of any external load the
particle keeps moving against the frictional resistance. Leaving
out the symmetric diffusive part of the motion the particle’s
unidirectional (ratchet) current v̄ is maintained against the
average frictional force. The Stokes efficiency, ηS, which is
the ratio of this work (that the ratchet performs against the
frictional drag) to the total energy pumped into the system from
the source of the external forcings, is also calculated.

An expression for ηS has been derived earlier [2, 14, 15]
which involves v̄ as well as the second moment of the velocity
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v calculated from the probability distribution P(v) of the
velocity v(t) recorded all through the trajectory of the particle.
We have calculated ηS as a function of the amplitude of the
applied forcing. ηS shows a peak, not coinciding with that of
the ratchet current. The distribution P(v) is almost symmetric
about v = 0 and the velocity dispersion grows monotonically,
approaching to be linear in F0 at large F0.

Recently, it has been reported [16] that in a tilted
periodic potential an underdamped particle motion shows a
remarkable dispersionless behaviour in the intermediate-time
regime for a range of constant tilt values, F0. In this
regime the majority of particles appear to move coherently
with a constant speed roughly equal to F0

γ0
. In the present

work we show that, when the system is driven by a square-
wave forcing of appropriate amplitude and frequency, such
dispersionless behaviour with added richness can be observed.
The dispersionless behaviour corresponding to the constant tilt
periodic potential gets punctuated and oscillatory behaviour of
dispersion of different kinds, depending on the frequency of
the periodic drive, naturally emerges. Interestingly, however,
contrary to expectations, the transient coherent particle motion
does not contribute positively to the largely coherent steady
state ratchet current in this system.

In section 2 the basic equation of motion used in this
model calculation will be presented. Section 3 will be devoted
to the presentation of the detailed results of our numerical
calculation. In section 4 we shall conclude with a discussion.

2. The model

In this work we drive the system periodically by a symmetric
square-wave forcing. The choice of square-wave forcing,
instead of a sinusoidal forcing, is to make a direct contact
with the adiabatically driven case. In the adiabatic drive
case the particle motion was studied, keeping the tilt of the
periodic potential constant and the net current for two opposing
directions of the same magnitude of tilt was calculated. The
calculation of the current for a constant tilt was carried out
using the matrix continued fraction method (MCFM) as well
as using the numerical Langevin dynamics [13].

The matrix continued fraction method was developed by
Risken and co-workers [1]. The method involves solving the
Fokker–Planck equation governing the time evolution of the
probability density function W (x, v, t) of particle position x
with velocity v(= dx

dt ) at time t . The distribution function
W (x, v, t) is expanded in series in terms of Hermite functions
ψn(v) with expansion coefficients Cn(x, t), as W (x, v, t) =
ψ0

∑∞
n=0 Cn(x, t)ψn(v). The Fokker–Planck equation is thus

transformed into an infinite system of coupled differential
equations for the expansion coefficients. The infinite system
of equations is truncated and is put in the form of a
vector recurrence relation of the expansion coefficients. This
recurrence relation is solved by a continued fraction method
for matrices in the steady state approximation to obtain
the Fourier components of the expansion coefficients Cn ,
from which the different physical quantities of interest are
calculated. The MCFM is extended to suit the present problem
in references [12, 13].

The constant tilt case shows dispersionless motion in
the intermediate regime as represented earlier [16]. Thus
the square-wave drive provides an opportunity to study the
dispersionless motion at finite frequencies. In the present case
we consider the forcing F(t) as

F(t) = ±F0, (2nT	 � t < (2n + 1)T	),

= ∓F0, ((2n + 1)T	 � t < 2(n + 1)T	),

where T	 is the half-period of forcing (and which corresponds
to a time interval after which the sign of F0 is changed) and
n = 0, 1, 2, . . .. The motion of a particle of mass m moving
in a periodic potential V (x) = −V0 sin(kx) in a medium
with friction coefficient γ (x) = γ0(1 − λ sin(kx + φ)) with
0 � λ < 1 and subjected to a square-wave forcing F(t) is
described by the Langevin equation:

m
d2x

dt2
= −γ (x)dx

dt
− ∂V (x)

∂x
+ F(t)+ √

γ (x)T ξ(t). (2.1)

Here T is the temperature in units of the Boltzmann constant
kB. The Gaussian distributed fluctuating forces ξ(t) satisfy
the statistics: 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = 2δ(t − t ′). For
convenience, we write down equation (2.1) in dimensionless
units by setting m = 1, V0 = 1, k = 1 so that T = 2
corresponds to an energy equivalent equal to the potential
barrier height at F0 = 0. The Langevin equation, with reduced
variables denoted again now by the same symbols, is written as

d2x

dt2
= −γ (x)dx

dt
+ cos x + F(t)+ √

γ (x)T ξ(t), (2.2)

where γ (x) = γ0(1−λ sin(x +φ)). Thus the periodicity of the
potential V (x) and also the friction coefficient γ is 2π3. The
potential barrier between any two consecutive wells of V (x)
persists for all F0 < 1 and it just disappears at the critical field
value F0 = Fc = 1. The noise variable, in the same symbol ξ ,
satisfies exactly similar statistics as earlier.

Equation (2.2) is solved numerically (with given initial
conditions) to obtain the trajectory x(t) of the particle for
various values of the parameters F0, γ0 and T . Also, the steady
state mean velocity v̄ of the particle is obtained as

v̄ =
〈

lim
t→∞

x(t)

t

〉

, (2.3)

where the average 〈· · ·〉 is evaluated over many trajectories.
The mean velocity is also calculated alternatively from the
numerically obtained distribution P(v) of velocities giving
almost identical results.

3. Numerical results

The Langevin equation (2.2) is solved numerically using two
methods: fourth-order Runge–Kutta [17] and Heun’s method
(for solving ordinary differential equations). We take a time

3 The parameter scaling is different from that of Machura et al, where [2] the
forcing amplitude a is equivalent to π times the amplitude F0 in our case. The
total potential barrier height (at a = 0) is ∼1, whereas in this work it is 2.
However, the noise strength D0 in [2] is the same as the temperature T used
here.
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Figure 1. This shows the variation of v̄ with F0 for the adiabatic
case. The results obtained by MCFM (continuous line) and
simulation (crosses with error bars) are put together for comparison.
The MCFM could not be used for F0 beyond the plotted range. The
plus signs with error bars correspond to the square drive case with
parameter values γo = 0.035, φ = 0.35 and T = 0.4 for T	 = 1000.
The zero line is given for reference. The inset shows the variation of
v̄ with T	: simulation data (points with error bars) for F0 = 0.26 and
for the same γ0, T and φ values. The fitted curve to the data points is
given just to guide the eye.

step interval of 0.001 during which the fluctuating force
ξ(t), obtained from a Gaussian distributed random number
appropriate to temperature T , is considered as constant and
the equation solved as an initial value problem. In the next
interval another random number is called on to use as the value
of ξ and the process repeated. A careful observation of the
individual trajectories of the particle shows that by t = 104 the
particle completely loses its memory of the initial condition
it had started with. When we look for steady state solutions
the trajectory is generally allowed to run for a maximum time
t = 107. Therefore, for steady state evaluation for v̄, etc, the
results become independent of initial conditions. The (Runge–
Kutta) method had earlier been used and obtained correct
results [18] in a similar situation. Also, the Runge–Kutta and
Heun’s methods were checked against results obtained earlier
for the adiabatic case (using the matrix continued fraction
method) and found to compare closely (figure 1). Heun’s
method, when applied in similar situations, takes much less
time than the Runge–Kutta method and yields qualitatively as
good a result (figure 1). With this confidence in our numerical
procedures, we apply either one or the other of these two
numerical schemes as the situation demands. We take λ = 0.9
all through our calculation in the following.

The motion of the particle is governed by the applied
square-wave forcing F(t). As F(t) changes periodically so
does the position of the particle. In view of this effect we
start our simulation at t = 0 alternately with F(0) = +|F0|
(first, third, fifth, etc) and −|F0| (second, fourth, sixth, etc)
trajectories. This gives a nice nonoscillating (and initial
condition independent) variation of overall average position
when finally averaged over a large even number of trajectories.

However, while calculating the position dispersions or velocity
dispersions at a given time t , the even (beginning with F =
−|F0|) and odd (beginning with F = +|F0|) numbered
trajectories are treated separately to calculate the deviations
from their respective mean values.

3.1. The ratchet current

An appreciable ratchet current v̄ is obtained in a small range
of F0 with a peak in an intermediate F0 for given γ0, T and
φ. The variation of v̄ as a function of the amplitude F0 of the
applied square-wave forcing F(t), with a frequency (= 1

2T	
) of

5×10−4 cycles per unit time, is shown (figure 1) for γ0 = 0.035
and temperature T = 0.4. Also, for comparison the algebraic
sum, v̄(F0) = v̄(+|F0|) + v̄(−|F0|) with applied forces
+|F0| and −|F0|, called the ratchet current in the adiabatic
limit, is plotted as a function of F0. The ratchet current
in the adiabatic limit (T	 → ∞) is calculated (by solving
the Fokker–Planck equation corresponding to equation (2.2))
using the matrix continued fraction method (continuous line
in figure 1) developed by Risken and co-workers [1] and
adapted in [12, 13] to suit the present case. The current is also
calculated numerically by solving the same Langevin equation
(crosses with error bars in figure 1). The adiabatic current
calculated by using the two methods agrees quite well. The
range of F0 over which the ratchet current is obtained in the
square-wave drive case (using numerical methods) is much
wider [0.05 < F0 < 0.7] compared to the adiabatic drive
condition [0.05 < F0 < 0.15] and the peak current occurs
at a larger F0 value. The range, though wider, still remains
well below Fc, the critical field at which the potential barrier
to motion just disappears. The current is, therefore, essentially
aided by thermal noise.

The ratchet current v̄ also shows nonmonotonic behaviour
as a function of the period of the drive. In the inset (figure 1)
we plot the variation of v̄ as a function of the time period
of the drive for F0 = 0.26, γ0 = 0.035 and T = 0.4.
For these parameter values the current v̄ peaks at a value of
T	 ≈ 500. For the comparison of timescales, it may be noted
that for an equivalent RCSJ model of Josephson junctions (with
typical junction capacitance C = 0.5 × 10−12 F and critical
current Ic = 10−9 C s−1) the characteristic Josephson plasma
frequency ωJ turns out to be about 103 times larger than the
drive frequency ( 1

2T	
) corresponding to T	 = 1000. In this

sense we obtain an appreciable ratchet current only for very
slow drives. It should, however, be noted that in the infinitely
slow adiabatic case the ratchet current is effectively zero for
F0 > 0.15 for γ0 = 0.035 at T = 0.4 and φ = 0.35.

3.2. The steady state dispersions

The position dispersions 〈(�x(t))2〉, where �x(t) = x(t) −
〈x(t)〉, are evaluated over a large number of trajectories for
various values of F0, and T	 = 1000. It is found that the
dispersions fit nicely to

log[〈(�x(t))2〉] = log(t)+ log(2D), (3.1)

for large t , typically t > 105.
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Figure 2. The variation of the diffusion constant D as a function of
the driving amplitude F0 for γ0 = 0.035, T = 0.4 and φ = 0.35 with
T	 = 1000. The inset shows the variation of the corresponding
Péclet number Pe with F0.

From the linear fit of the graphs we calculate the diffusion
constants D(F0) and the result is shown in figure 2. The
diffusion constant has a large value between F ≈ 0.15 and
0.35. The peak height is quite large ≈800. As F0 is increased
D decreases sharply and becomes smaller than 50 (which is
less than 10% of its peak value) for F0 > 0.7. This [0.15 �
F0 � 0.35] is also the region where the ratchet current v̄ is
appreciable. The Péclet number, Pe , as defined earlier, is also
calculated as a function of F0. They are plotted in the inset
of figure 2. It is clear from the figure that in the same region
Pe(=2( x̄(t)2

〈�x(t)2〉 )) is also much larger than 2. This indicates that
in the region [0.15 � F0 � 0.35] the particle motion is highly
diffusive but concomitantly it is greatly coherent too. This is
also indicated equivalently by the observation that, even though
the position dispersions (fluctuations) are large, the relative
fluctuations of position in this region are considerably lower

(
√

〈�x(t)2〉
x̄(t) < 1). As indicated by the result in the adiabatic case

(figure 3 [12]) this range of F0 of coherent motion is expected
to shift as the value of γ0 is changed.

Although our system is different from that of Machura
et al [2], at this point it would be interesting to make a
comparison with their result. They observe that for their low
temperature case D0 = 0.01 in the vicinity of a ≈ 0.6
the velocity fluctuation underwent a rapid change (figure 1a
of [2]). To translate this to our case (see footnote 3) a ≈ 0.6 is
equivalent to F0 ≈ 0.2 and, given their potential barrier being
just about half of the value in our case, one should expect
the peaking of velocity dispersion to occur below F0 = 0.4.
Taking into consideration our temperature being 40 times 0.01
the phenomena should occur much below F0 = 0.4. In this
sense the region [0.15 � F0 � 0.35] seems quite reasonable.
Also, v̄ of figure 3a of [2] at D0 = 0.4 make a good comparison
with figure 1 in our case. However, as mentioned earlier
the two systems are quite different in basics to have an exact
comparison.

Figure 3. Plot of velocity distribution P(v) for three values of
driving amplitudes F0 = 0.05, 0.12 and 0.30 and φ = 0.35. The
figure in the inset shows the variance of velocities as a function of F0

fitted with a straight line to show the linear growth of variance at
large F0.

The velocity distribution P(v) also shows interesting
behaviour. In figure 3 we plot P(v) for three values of F0. A
sharp peak which is almost indistinguishable from a Gaussian
centred at v = 0 for small F0 = 0.05, gets split up into three
peaks for F0 = 0.12, and similarly for F0 = 0.30, with the
central peak gradually diminishing. This shows a behaviour,
including the nearly linear growth of the variance with F0 (inset
figure 3), quite similar to what has been reported earlier in a
different system [2]. There is, however, one difference. The
side peaks of P(v) in our calculation have their origin in the
running states of the particle. It is, perhaps, due to the low
frequency square-wave drive, instead of the sinusoidal drive,
that for as low an amplitude as F0 = 0.3 we get three disjoint
velocity bands and at F0 = 0.6 we get just two bands, the
central band being almost unpopulated. The three peaks, for
example for F0 = 0.3, could be fitted to a combination of three
Gaussians. With a cursory look, the left and right Gaussians
barely show much difference. However

〈v〉 =
∫ ∞

−∞
vP(v) dv (3.2)

gives approximately the same value as v̄ and 〈v〉(F0) showing
exactly the same nature as v̄(F0) (figure 4). It is to be noted that
the maximum ratchet current occurs (figure 1) for F0 at which
P(v) shows a transition from a three-peak form to a two-peak
one. In this transitional range the frictional asymmetry shows
the maximum contrast in responding to the field. In the case
where the intrawell motion dominates the ratchet current is low
and again when there is only running states (at large F0) the
frictional asymmetry becomes ineffective. These observations
are corroborated by the velocity distributions in the adiabatic
case, where again maximum difference in current occurs at the
transitional period from a two-peak distribution to a single-
peak (running state only) distribution. For the adiabatic case
the transitional range occurs at lower F0 values. In the square-
wave drive case, the transitional region is shifted to higher F0,
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Figure 4. This shows the variation of the steady state mean velocity
v̄, equation (2.3), and 〈v〉, equation (3.2), for the same parameter
values as in figure 2.

because, when the direction of F0 is changed, the particles
reverse their direction of motion too, and hence have enough
chance to get locked into a potential well. This shift in F0 is
responsible for shifting the peak of the current maximum for
the square drive case as shown in figure 1.

3.3. The efficiency of ratchet performance

From the velocity distribution P(v) we calculate the Stokes
efficiency, ηS, defined as [2]

ηS = 〈v〉2

|〈v2〉 − T | , (3.3)

as a function of F0. Figure 5 shows that ηS is larger in the same
range of F0 where it shows larger v̄. The peak of ηS, however,
does not occur at the same position as the peak of v̄. It is,
however, to be noted that the plotted figure is calculated from
averages over a small number (∼20) of ensembles because
it is computationally quite expensive to obtain results for the
steady state (maximum t = 107) and hence not feasible to
obtain averaging over a larger number of ensembles. Though
the qualitative behaviour is encouraging the efficiencies are
small ∼10−5. In the adiabatic drive case (figure 8, [13]) we
have found that Stokes efficiency depends on various parameter
values: γ0, T , etc. The efficiency shown here is for a small
γ0 = 0.035, T	 = 1000 and T = 0.4 where the current is also
very low. The efficiency of this symmetrically driven system
can, however, be improved to a good extent by an optimal
choice of these parameters.

An inertial ratchet driven by a zero mean asymmetric drive
can, however, give a highly efficient performance compared
to the symmetrically driven ratchet. For example, when the
system is driven by a field

F(t) = ±F0, (2nT	 � t < (n + α)2T	),

= ∓ α

(1 − α)
F0, ((n + α)2T	 � t < (n + 1)2T	),

Figure 5. This shows Stokes efficiency, ηS as a function of F0 for the
same parameter values as in figure 2. Simulation data points (circles)
fitted with a curve to guide the eye. The inset shows the difference in
the velocity distribution for symmetric (three peaks) and asymmetric
drive for the same value of F0 = 0.16 and τ = 2000 with α = 0.2.

with α = 0.2 gives an efficiency of 3.8 × 10−2 compared
to 6.2 × 10−5 in the symmetric drive (α = 0) case with
F0 = 0.16 and 2T	 = 1000. This is made possible because in
the symmetric drive case the particles move in either direction
with almost equal probability whereas in the asymmetric drive
case the particle motion in one direction is practically blocked,
as is evident from the corresponding velocity distributions
shown in the inset of figure 5. The contribution of the system
inhomogeneity for this improved performance is, however,
quite insignificant.

3.4. The transient-state dispersions and the ratchet current

When a constant force F is applied to the system it shows
dispersionless behaviour: 〈(�x(t))2〉 does not change with
time in the intermediate timescales, roughly [103 < t < 105],
for around [0.12 < F < 0.7] at T = 0.4 for γ0 = 0.035. The
result of dispersionless behaviour had originally been shown
and explained [16] beautifully for the constant friction γ0 case:
the position distribution moves undistorted at constant velocity
v = F

γ0
or equivalently, the velocity distribution remains

undistorted centred at v = F
γ0

. The interval [ t1 < t < t2]
of time during which the system shows this remarkable
intermediate-time behaviour depends on the tilt force F , as
it should also on other parameters. t1 is roughly of the order
of, but much larger than, the mean Kramers passage time
corresponding to the lower of the potential barriers on either
side of a well. The transient-time dispersionless particle-
motion behaviour is sensitive to initial conditions. In the
following we specifically begin from the bottom of the well at
x ≈ π

2 with particle velocities given by a Maxwell–Boltzmann
distribution at temperature T = 0.4.

When the inhomogeneous system is driven periodically
by a square-wave forcing of amplitude F0, the dispersionless
coherent nature of average motion gets interrupted, depending
on the value of T	 of the forcing (figure 6). When t1 <
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Figure 6. The plot of position dispersions 〈(�x(t))2〉 versus time t
(in logarithmic scale) for different values of (T	) of forcing with
F0 = 0.2, φ = 0.35. The inset shows the clipped part of the plot at
larger time. The dashed line in the inset is drawn just to guide the eye
to compare with the diffusive regime.

T	 < t2, at t = T	 the dispersion gets a jerk and shoots up
only to get flattened again in another bout of dispersionless
regime. This regime also gets a similar jolt after another
T	 and the process continues for a large number of periods.
When the direction of the applied force is changed the ‘forward
moving’ particles are forced individually to halt momentarily
to begin moving afresh in the new direction of the force.
While in the ‘state of halt’ particles are more likely to find
themselves ‘thermalized’ to the bottom of some well and thus
the system gets initialized as in the beginning. The system
finds itself in a similar situation again and again periodically
with each change of force direction and continues with its
unfinished dispersionless journey for a large number of periods
with remarkable robustness (inset of figure 6, T	 = 5000).
However, when T	 < t1 the system never gets a chance to
experience its dispersionless journey because only a fraction
of the particles get the opportunity to acquire the required
constant average velocity [16] of F0

γ0
and the rest keep lagging

behind even by the end of constant force duration T	. Instead,
as soon as the direction of the force F is reversed after T	,
the dispersion dips after a brief climb up, as the particles get
herded together briefly before getting dispersed further in the
reversed direction of F0. This can be seen very clearly in the
time evolution of the position probability distribution profile
P(x, t). The front of the P(x, t) moves with velocity F0

γ0
while

the rest lag behind it moving at a slower speed but trying
to catch up with the front throughout T	. This process of
dispersion dipping (after a small continuing rise) and rising
to a higher value after each T	 is repeated for several tens of
periods (figure 6).

In the inset of figure 6 we have drawn a straight line with
slope 1 as a guide to show that ultimately the curves should
achieve that average slope at large times for various T	 values
of drives. Even though the average slope of the curves have
not yet reached the diffusive slope of one, the small T	 curves
are slowly approaching that value. One can, therefore, safely

Figure 7. The average displacement of particles as a function of
time, driven by equal numbers of ±F(t) profiles (or equal number of
odd and even numbered trajectories) for T	 = 5000, γ0 = 0.035,
F0 = 0.2, φ = 0.35 and T = 0.4. The insets highlight the
contributions to the mean displacement of odd (dashed line,
beginning with +|F0) and even (solid line) numbered trajectories
separately, leading to the main figure. The mean displacements for
the even numbered trajectories are shown with a reversed sign.

infer that in the steady state situation the effective diffusion
constant should increase monotonically with T	 for small T	.
The frequency of drive, or equivalently T	, thus plays an
important role about how the particles diffuse out of their wells.
For example, the population of the initial well depletes with
time exponentially, N(t) = N(0)e−bt , with b = 0.0023 for
T	 = 250 and b = 0.002 for T	 = 500, for γ0 = 0.035
at T = 0.4 that we have studied. By the time the well
gets effectively exhausted the first particles would have moved
further than a thousand potential wells. Of course, this first
well itself (as all others) keeps getting repopulated all the time.

The intermediate-time dispersionless motion is not an
exclusive characteristic feature of inhomogeneous systems. It
is a characteristic feature of an inertial washboard potential
system. However, its study in the inertial inhomogeneous
system provides a convincing explanation of the variation of
ratchet current as a function of T	 (inset of figure 1) and helps
in finding a criterion to improve the performance of the ratchet.

In figure 7 the displacement of particles, averaged over
1000 ensembles, as a function of time when driven by an
equal number of ±F(t) profiles, is presented for T	 = 5000,
γ0 = 0.035, F0 = 0.2 and T = 0.4. This case corresponds to
the repeated dispersionless motion shown in figure 6. Figure 7
clearly shows that during the dispersionless motion the average
displacement of particles effectively remains constant. In other
words, during the period of dispersionless motion the particles
move equally in the left as well as in the right direction,
thereby contributing nothing to the ratchet current: while in
the dispersionless motion the particles fail to see the frictional
inhomogeneity of the system. All the change in the average
displacement and hence all the contribution to the ratchet
current comes during the dispersive period of motion. This
is shown in the inset of figure 7 where for clarity the mean
particle positions for F(t) beginning with F(0) = −F0 (even
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numbered trajectories) are shown as a function of time with
their sign reversed. The mean particle displacements for odd
and even numbered trajectories differ only during the interval
just after the reversal of F0 and before the dispersionless
regime begins and the two lines of mean positions (insets of
figure 7) run parallel during the dispersionless regime. This
clearly indicates that, in order to get a larger current, an
optimum choice of T	 needs to be made which, naturally,
avoids the dispersionless regime but is not too small in order
to allow the particles to leave their potential wells. This
conclusion is well supported by the inset of figure 1, where
the ratchet current maximizes around T	 = 500 which is well
below the T	 showing dispersionless motion.

The velocity dispersions and position dispersions together
show interesting behaviour. Figure 8 shows that during the
dispersionless regime when the position dispersion is constant
and maximum the velocity dispersion is also constant but it has
a minimum value. This minimum constant value is repeated
in all the nT	, n = 1, 2, . . . intervals whereas the value of
the constant position dispersion increases in every successive
nT	 interval as shown in figure 6 and the inset of figure 8.
In the dispersive regimes the velocity dispersions are squeezed
to very sharp troughs exactly where the position dispersions
show sharp peaking. In the inset of figure 8 these dispersions
are shown for T	 = 250. The onward rush of the particles do
not halt immediately after the direction of F0 is changed at nT	
but it continues for a very short time giving a small increase in
the spread of P(x). Then a majority of particles stop, giving a
sharp peak in P(v) at v = 0, reducing its spread drastically. At
that moment the product of position and velocity distribution
spread becomes a minimum. The reverse journey thereafter
increases the spread of P(v) but there is a slow squeezing of
P(x) before it begins to spread again. The maximum P(x)
squeezing, however, does not exactly coincide with the largest
of the broad P(v) but it is at a rather close range. In this case
too the minimum velocity dispersion remains constant for all
nT	. But the wings of P(x), though thin, keep spreading with
time giving an average increase of dispersion as time increases.
However, most of the particles remain confined roughly to a
region [ −|F0|

γ0
T	 < x < +|F0|

γ0
T	] for a long time.

4. Discussion and conclusion

The ratchet effect, in this work, is brought about just by the
phase lag φ between the periodic potential and the nonuniform
friction of the medium, without having to have an overall
external bias. This is seemingly a weak cause to generate
unidirectional current. Figures 1–5 refer to a square-wave
forcing with T	 = 1000. The choice of this T	 clearly
avoids the dispersionless regime. Yet, this is not the optimum
value of T	. It should have been around 500 in order to get
the largest possible ratchet current. This choice would have
definitely enhanced the Stokes efficiency of operation. The
same can also be said about other parameters, such as T , and
φ for γ0 = 0.035. Moreover, an optimal choice of all these
parameters may possibly help in obtaining a larger ratchet
current to obtain useful practical work against an applied load.

Figure 8. Illustration of velocity dispersions 〈(�v(t))2〉 (thin line)
and position dispersions 〈(�x(t))2〉 (bold line) during a time interval
for T	 = 5000 and φ = 0.35. The inset shows the corresponding
plots for square drive forcing with smaller T	 = 250 with no
dispersionless regime.

However, with the help of these figures we have been able to
exhibit the qualitative trends shown by the ratchet.

The dispersive behaviour for drives with T	 > t2 is
difficult to study because it takes very long computer times
to arrive at a concrete result. However, the indications are
there that for these large T	 also, the system shows repeated
dispersionless regimes, though somewhat enfeebled because
the process of diffusion will dominate at these large times.

To conclude, the present detailed study reinforces an
earlier suggested interesting method [12] of obtaining a ratchet
current in inertial noisy systems by exploiting the frictional
inhomogeneity of the medium. Moreover, it shows that as
the system is driven by a square-wave external forcing of
appropriate frequency, dispersionless particle motion could be
observed after each field direction change. These transient
dispersionless regimes, however, disappear as the frequency is
increased and instead periodic variation of dispersions results.
The ‘moderately high frequency’ dispersive regimes (where
dispersions vary periodically) help in increasing the ratchet
current considerably. Similarly, in these dispersive regimes,
the velocity dispersion also varies periodically, with twice the
frequency of the field drive, but in exact anti-phase to the
position dispersions. In the nondispersive regimes, on the other
hand, when the particles move coherently, they tend not to
notice the frictional inhomogeneity and do not contribute to
the ratchet current. In the present work, however, the ratchet
current is obtained when the amplitude of periodic rocking was
small. It would be interesting to examine if one could obtain a
ratchet current with the help of high amplitude drive as in the
case of asymmetric periodic potentials.
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[10] Blanter Ya M and Büttiker M 1988 Phys. Rev. Lett. 81 4040
[11] Benjamim R and Kawai R 2008 Phys. Rev. E 77 051132
[12] Reenbohn W L, Saikia S, Roy R and Mahato M C 2008

Pramana J. Phys. 71 297
[13] Reenbohn W L and Mahato M C 2009 J. Stat. Mech.

P03011 (arXiv:0807.2725)
[14] Lindner B, Kostur M and Schimansky-Geier L 2001 Fluct.

Noise Lett. 1 R25
[15] Sekimoto K 1997 J. Phys. Soc. Japan 66 6335
[16] Lindenberg K, Sancho J M, Lacasta A M and Sokolov I M

2007 Phys. Rev. Lett. 98 020602
[17] Press W H, Teukolsky S A, Vetterling W T and

Flannery B P 1992 Numerical Recipes (in Fortran): the Art
of Scientific Computing (Cambridge: Cambridge University
Press)

Mahato M C and Shenoy S R 1993 J. Stat. Phys. 73 123
[18] Borromeo B, Constantini G and Marchesoni F 1999 Phys. Rev.

Lett. 82 2820
Mahato M C and Jayannavar A M 2003 Physica A 318 154

9

http://dx.doi.org/10.1088/0953-8984/17/47/007
http://dx.doi.org/10.1103/PhysRevE.70.061105
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1103/PhysRevLett.98.040601
http://dx.doi.org/10.1103/PhysRevB.77.104509
http://dx.doi.org/10.1103/PhysRevLett.100.217001
http://dx.doi.org/10.1016/0039-6028(85)90431-5
http://dx.doi.org/10.1119/1.10121
http://dx.doi.org/10.1007/BF01011555
http://dx.doi.org/10.1007/BF01304221
http://dx.doi.org/10.1103/PhysRevLett.81.4040
http://dx.doi.org/10.1103/PhysRevE.77.051132
http://dx.doi.org/10.1007/s12043-008-0162-5
http://dx.doi.org/10.1088/1742-5468/2009/03/P03011
http://arxiv.org/abs/0807.2725
http://dx.doi.org/10.1142/S0219477501000056
http://dx.doi.org/10.1103/PhysRevLett.98.020602
http://dx.doi.org/10.1007/BF01052753
http://dx.doi.org/10.1103/PhysRevLett.82.2820
http://dx.doi.org/10.1016/S0378-4371(02)01421-8

	1. Introduction
	2. The model
	3. Numerical results
	3.1. The ratchet current
	3.2. The steady state dispersions
	3.3. The efficiency of ratchet performance
	3.4. The transient-state dispersions and the ratchet current

	4. Discussion and conclusion
	Acknowledgments
	References

